Buchi neriCorpi CelestiNews

Modelli fisici e modelli matematici del Buco nero

Un analogo fisico di un buco nero è il comportamento delle onde sonore in prossimità di un ugello de Laval. Essa è una strozzatura utilizzata negli scarichi dei razzi che fa passare il flusso dal regime subsonico a supersonico. Prima dell’ugello le onde sonore possono risalire il flusso del getto, mentre dopo averlo attraversato ciò è impossibile perché il flusso è supersonico, quindi più veloce del suono. Altri analoghi possono essere le onde superficiali in un liquido in moto in un canale circolare con altezza decrescente, un tubo per onde elettromagnetiche la cui velocità è alterata da un laser, una nube di gas di forma ellissoidale in espansione lungo l’asse maggiore.

Effetto lente gravitazionale causato dal passaggio di una galassia dietro a un buco nero in primo piano
Effetto lente gravitazionale causato dal passaggio di una galassia dietro a un buco nero in primo piano

Tutti questi modelli, se raffreddati fino alla condizione di condensato di Bose – Einstein, dovrebbero presentare l’analogo della radiazione di Hawking, e possono essere usati per correggere le previsioni di quest’ultima: come un fluido ideale, la teoria di Hawking considera la velocità della luce (suono) costante, indipendentemente dalla lunghezza d’onda (comportamento detto di Tipo I). Nei fluidi reali la velocità può aumentare (Tipo II) o diminuire (Tipo III) all’aumentare della lunghezza d’onda. Analogamente dovrebbe avvenire con la luce, ma se il risultato fosse che lo spazio tempo diffonde la luce come il Tipo II o il Tipo III, andrebbe modificata la relatività generale, cosa già nota perché per le onde con lunghezza d’onda prossima alla lunghezza di Planck diventa significativa la gravitazione quantistica.

Restando invece nel campo relativistico (ossia relativo alla teoria della relatività), poiché per descrivere i buchi neri sono sufficienti tre parametri – massa, momento angolare e carica elettrica – i modelli matematici derivabili come soluzioni dell’equazione di campo della relatività generale si riconducono a quattro:

1. Buco nero di Schwarzschild

È la soluzione più semplice in quanto riguarda oggetti non rotanti e privi di carica elettrica, ma è anche piuttosto improbabile nella realtà, poiché un oggetto dotato anche di una minima rotazione una volta contratto in buco nero deve aumentare enormemente la sua velocità angolare in virtù del principio di conservazione del momento angolare.

2. Buco nero di Kerr

Deriva da oggetti rotanti e privi di carica elettrica, caso che presumibilmente corrisponde alla situazione reale. Buco nero risultante dal collasso di una stella in rotazione nel quale la singolarità non è più un punto, ma assume la forma di un anello a causa della rotazione. Per questa ragione si formeranno non uno ma due orizzonti degli eventi distinti. La rotazione fa sì che si formi la cosiddetta ergosfera. Questa è la zona immediatamente circostante all’orizzonte esterno causata dall’intenso campo gravitazionale dove lo spaziotempo oltre a essere curvato entra in rotazione trascinato dalla rotazione del buco nero come un gigantesco vortice.

3. Buco nero di Kerr-Newman

Riguarda la situazione in cui si ha sia rotazione sia la carica elettrica ed è la soluzione più generale. In tale situazione lo spazio tempo non sarà asintoticamente piatto a causa della presenza del campo elettromagnetico.

4. Buco nero di Reissner-Nordström

È il caso di un buco nero dotato di carica elettrica ma non rotante. Valgono le stesse considerazioni fatte sul buco nero di Kerr-Newman a proposito del comportamento asintotico.