AstrobiologiaFenomeni e MisteriNews

Viaggi spaziali e sopravvivenza di forme di vita

Un altro argomento dell’astrobiologia riguarda la possibilità di fare viaggi ed esplorare pianeti del Sistema solare o di altre stelle e l’interazione tra l’ambiente spaziale le forme di vita umane e non solo. Le ipotesi di viaggi interstellari devono tener conto dei danni subiti dagli esseri viventi in ambienti extraterrestri e della mancanza di energia necessaria a rendere fattibili questi viaggi.

Esseri umani, animali e piante nello spazio extraterrestre

Rappresentazione artistica di una stazione orbbitale intorno alla Terra
Rappresentazione artistica di una stazione orbbitale intorno alla Terra

Anche se protetti da un veicolo spaziale, gli astronauti (e i loro batteri, animali e piante) subiscono danni dalle particelle dei raggi cosmici e dall’assenza di forza di gravità.

Il danno che i raggi cosmici e le radiazioni elettromagnetiche ad alta energia possono provocare sui viventi è molto elevato. Se la probabilità di morire di cancro per un essere umano che vive in una nazione sviluppata è del 30%, per un uomo non fumatore dopo un viaggio su Marte può aumentare moltissimo. Un viaggio del genere quindi non si può mettere in pratica con dei rischi così elevati e richiederà soluzioni speciali.

La mancanza di gravità è un secondo aspetto con effetti complessi: Per studiare gli effetti che subiscono animali, piante ed umani nello spazio si conducono degli esperimenti sulla ISS, tra questi alcuni riguardano la mancanza di gravità. Sulla stazione la gravità è 10-6 g, un milionesimo rispetto a quella sulla superficie terrestre (microgravità).

Effetti causati dalla microgravità

  • In queste condizioni si perde la percezione di alto e basso, data da alcuni organelli (statoliti per le piante e otoliti per gli animali), che in presenza di gravità si depositano verso il basso e in microgravità invece fluttuano.
  • Nella crescita la struttura delle piante subisce delle modifiche, poiché non c’è più una precisa direzione verticale che indirizza rami e radici. Le piante in microgravità crescono più rapidamente all’inizio, poi si curvano e perdono la dominanza apicale. Le radici e i rami secondari possono diventare predominanti e crescere più di quelli primari.
  • Sono state anche coltivate piante di frumento, utilizzando culture idroponiche, messe cioè tra due strati in cui scorre un fluido nutriente.
  • Si è vista una maggiore produzione di insulina umana e di alcune proteine rispetto a quando si è in presenza di gravità.
  • Per quanto riguarda gli animali la gravità influenza le cellule riproduttive. Esperimenti condotti sulla rana acquatica Xenopus laevis e altri animali mostrano che in assenza di gravità alcuni embrioni subiscono deformazioni alla spina dorsale, mentre altri come il riccio di mare non subiscono effetti negativi.

Effetti della microgravità sugli esseri umani

Sugli umani gli effetti della mancanza di gravità sono molteplici, come studiato dalla medicina spaziale. In sintesi (dal libro ESA):

  • il sistema vestibolare è disturbato; si perde il senso dell’equilibrio e non si percepiscono le direzioni; Si ha come la sensazione continua di precipitare in caduta libera;
  • false sensazioni di moto degli arti e degli ambienti;
  • si può avere mal di spazio;
  • poiché non c’è gravità i fluidi si ridistribuiscono dagli arti in tutto il corpo (Riflesso di immersione). Queste variazioni dei fluidi extracellulari producono facce paffute e gambe sottili;
  • parte dei fluidi passa dal sangue ai tessuti;
  • il corpo non ha sete, non beve, ma elimina di più i liquidi, diminuendo il volume sanguigno;
  • il cuore lavora meno e diminuisce di dimensioni e diminuisce successivamente anche l’eliminazione dei liquidi;
  • i muscoli si atrofizzano per mancanza di resistenza all’ambiente;
  • le ossa perdono calcio e si indeboliscono;
  • la spina dorsale si allunga;
  • diminuisce la vitamina D per mancanza di luce solare diretta.

Il corpo per riprendersi e far tornare ossa e muscoli allo stato normale impiega un tempo maggiore alla durata della missione.

Esseri umani, animali e piante nello spazio extraterrestre

All’interno di una navicella o nella stazione spaziale ISS gli esseri viventi sono protetti dalla riproduzione di un ambiente terrestre (atmosfera, pressione, temperatura, umidità, polveri, sterilizzazione). Nello spazio vuoto invece le cellule vegetative e gli organismi viventi, ricchi d’acqua, possono andare incontro alla distruzione poiché l’acqua congela aumentando di volume e sublima molto velocemente per la pressione troppo bassa (sublimazione esplosiva). Si usano per questo le tute spaziali quando si esce dalla navicella e durante le attività extraveicolari.

Alcuni esseri viventi però in condizioni estreme possono assumere delle strutture molto resistenti (spore), sospendendo il loro metabolismo. Il freddo quindi per queste forme di vita non è un problema, ma lo rimane la radiazione UV e le particelle cariche, che provocano danni al DNA. Si è osservato che il DNA viene danneggiato molto dalla radiazione UV di lunghezza d’onda di 260 nm (UV-C). Tuttavia alcuni batteri e piccoli organismi come i tardigradi in condizioni di vuoto e a basse temperature riescono a sopravvivere in esperimenti condotti nello spazio, mentre il batterio il Deinococcus radiodurans resiste a dosi di radiazioni che sarebbero letali per un essere umano, grazie a copie multiple del suo DNA.
Si porrebbe quindi il problema di una panspermia diretta ma involontaria: se i veicoli spaziali non fossero ben sterilizzati, potrebbero contaminare altri pianeti, se i batteri riuscissero a sopravvivere nello spazio.

Energia dei viaggi spaziali e tempi di percorrenza

L'energia necessaria per lanciare nello spazio varie sonde o astronavi, confrontata con la loro massa nell'ipotesi non relativistica, confrontata con la produzione di energia nazionale, mondiale e emessa dal Sole
L’energia necessaria per lanciare nello spazio varie sonde o astronavi. Confrontata con la loro massa nell’ipotesi non relativistica, confrontata con la produzione di energia nazionale, mondiale e emessa dal Sole

I viaggi nello spazio a grandi distanze potrebbero non essere fattibili a causa dell’energia richiesta per il volo e la protezione degli esseri viventi a bordo; se questa energia supera di molto la disponibilità del pianeta, un viaggio interstellare non sarebbe mai possibile, indipendentemente dal livello di civiltà e tecnologia raggiunto.

Per lanciare un veicolo nello spazio da un pianeta c’è bisogno di un’energia cinetica tale da superare l’energia gravitazionale del pianeta stesso. Si deve raggiungere quindi una velocità pari o maggiore della velocità di fuga. Per un corpo sulla Terra la velocità di fuga dal pianeta è di 11,2 km/s, mentre una sonda lanciata dalla Terra per sfuggire alla forza di gravità del Sole deve raggiungere almeno 42,42 km/s.

Terzo principio di azione e reazione

Per raggiungere una velocità sufficiente per il lancio si usa il terzo principio di azione e reazione: viene sparato del gas ad alta energia dai motori a razzo e a questa velocità di scarico corrisponde una velocità di spinta, che fa muovere il corpo in avanti, come effetto di rinculo.

Il problema è che i veicoli spaziali usati fino all’inizio del XXI secolo hanno la maggior parte del peso in combustibile e razzi vettori che vengono persi subito dopo il lancio. Ad esempio nei lanci dello Shuttle il carico utile (esperimenti e equipaggio) era solo 28 tonnellate rispetto a 1900 tonnellate di serbatoi e missili. Il costo in termini di energia cinetica derivante da combustibile è quindi molto elevato e cresce tanto più quanto più è alta la velocità che si vuole raggiungere e la massa della navetta spaziale. A velocità che si avvicinano a 30 mila km/s, 1/10 della velocità della luce, il costo del volo in termini di energia può diventare insostenibile.

Effetto fionda e teoria dei tunnel spaziali

Si può cercare di aumentare la velocità di volo sfruttando ad esempio l’effetto fionda, metodo utilizzato dalle sonde Voyager, oppure usando vele solari o vele magnetiche, che accelerano progressivamente sfruttando la radiazione e il vento solare. Tuttavia quest’ultimo metodo non ha ancora raggiunto risultati efficienti. Per frenare poi, una volta che il corpo è arrivato alla meta, occorre utilizzare dei retrorazzi con ulteriore dispendio di energia oppure l’attrito atmosferico (aerobraking) se il pianeta di arrivo è provvisto di atmosfera.

Oltre all’energia, il problema dei viaggi spaziali è la loro durata. Andare a velocità molto elevate significa diminuire il tempo di viaggio, ma anche consumare più energia. Arrivando a velocità vicine a quella della luce, se ad esempio si volesse arrivare al centro galattico, il viaggio durerebbe 80000 anni rispetto alla Terra, un tempo molto maggiore dell’età media di un umano, e della durata della stessa tecnologia utilizzata per mantenerlo in vita nell’astronave.

Tuttavia fisicamente non è possibile andare a velocità maggiori. Secondo teorie cosmologiche ci sarebbero dei modi per spostarsi lungo traiettorie più corte (tunnel spaziali), ma non vi sono ancora prove a favore di ciò. È pensabile che, indipendentemente dalla tecnologia, un viaggio spaziale sia troppo alto in costi energetici per qualsiasi civiltà in grado di muoversi nello spazio.