Corpi CelestiNewsStelle

Raggi gamma

In fisica nucleare i raggi gamma, spesso indicati con la corrispondente lettera greca minuscola γ, sono le radiazioni elettromagnetiche prodotte dal decadimento radioattivo dei nuclei atomici.

Sono delle radiazioni a frequenza molto alta e sono tra le più pericolose per l’uomo, come tutte le radiazioni ionizzanti. La pericolosità deriva dal fatto che sono onde ad alta energia capaci di danneggiare irrimediabilmente le molecole che compongono le cellule, portandole a sviluppare mutazioni genetiche o addirittura a morte.

Sulla Terra possiamo osservare sorgenti naturali di raggi gamma sia nel decadimento dei radionuclidi sia nelle interazioni dei raggi cosmici con l’atmosfera; più raramente anche i fulmini producono questa radiazione.

Sorgenti di raggi gamma non nucleari

Supernova SN1987A
Supernova SN1987A

I fotoni provenienti da sorgenti astrofisiche che trasportano un’energia presente nell’intervallo gamma sonochiamati radiazione-gamma. Questi sono spesso prodotti da particelle subatomiche o da interazioni particella-fotone come, ad esempio, dall’annichilazione elettrone-positrone, dal decadimento neutrale del pione, dal bremsstrahlung e/o dalla radiazione di sincrotrone.

  • Temporali terrestri: i temporali possono produrre brevi impulsi di radiazione gamma, chiamati “lampi terrestri”. Si pensa che questi raggi gamma siano prodotti dall’alta intensità del campo elettrostatico che accelera gli elettroni poi rallentati dagli urti con gli altri atomi presenti nell’atmosfera. I temporali possono generare raggi gamma di intensità fino a 100 MeV. Questi potrebbero rappresentare un rischio per la salute di passeggeri ed equipaggio a bordo di aerei in volo nelle zone di interesse.
  • Raggi cosmici: Nell’universo i raggi gamma ad alta energia comprendono anche quelli di fondo prodotti quando i raggi cosmici (protoni o elettroni ad alta velocità) collidono con la materia ordinaria provocando una produzione di coppia di radiazione di 511 keV. Alternativamente, quando i raggi cosmici interagiscono con nuclei ad alto numero atomico, si ha bremsstrahlung che produce energie di decine di MeV.
  • Pulsar e magnetar: i pulsar sono stelle di neutroni con un campo magnetico che produce un fascio concentrato di radiazione. Questi oggetti stellari hanno un campo magnetico relativamente longevo che produce fasci di particelle cariche a velocità relativistiche; particelle che, impattando con gas o polvere nelle loro immediate vicinanze, vengono decelerate emettendo raggi gamma. Un altro meccanismo di produzione di radiazioni sono le magnetar. Stelle di neutroni con un campo magnetico molto intenso che si pensa rappresentino dei ripetitori astronomici di deboli raggi gamma.

Altre sorgenti

  • Quasar e galassie attive: si pensa che i raggi gamma più intensi, provenienti dai quasar molto distanti e dalle galassie attive vicine, abbiano un meccanismo di produzione simile a quello degli acceleratori di particelle. Sembra che i buchi neri supermassicci presenti al centro di queste galassie rappresentino delle potenti sorgenti che in modo intermittente distruggono le stelle e concentrano le particelle cariche risultanti in fasci che emergono dai loro poli. Quando questi fasci interagiscono con gas, polvere o fotoni a bassa energia producono raggi X e raggi gamma.
  • Esplosioni di raggi gamma: sono le sorgenti più potenti di ogni tipo di radiazione elettromagnetica. Quelle a lunga durata sono molto rare rispetto alle sorgenti sopra elencate; al contrario si pensa che quelle a breve durata producano raggi gamma durante la collisione di una coppia di stelle di neutroni o di una stella di neutroni e un buco nero. Queste ultime durano un paio di secondi o meno e hanno un’energia inferiore a quella delle esplosioni a lunga durata. Le esplosioni dette a “lunga durata” producono un’energia di 1044 joule (la stessa energia che il nostro Sole produce in tutta la sua vita) in un tempo di solo 20-40 secondi. Di questa quantità di energia rilasciata i raggi gamma rappresentano circa il 50%. Le principali ipotesi riguardo a questo meccanismo di esplosione sono lo scattering Compton e la radiazione di sincrotrone dovuto a particelle cariche di alta energia. Questi processi si attivano quando particelle cariche relativistiche lasciano l’orizzonte degli eventi del buco nero appena formato. Il fascio di particelle viene concentrato per poche decine di secondi dal campo magnetico della ipernova che sta esplodendo.

Spettroscopia gamma

L'evoluzione finale di una stella massiccia, che culmina col collasso di quest'ultima in un buco nero e l'esplosione di un gamma ray burst
L’evoluzione finale di una stella massiccia, che culmina col collasso di quest’ultima in un buco nero e l’esplosione di un gamma ray burst

Poiché il decadimento beta è accompagnato dall’emissione di un neutrino lo spettro di emissione beta non presenta linee nitide. Questo comporta che non è possibile descrivere i diversi livelli energetici del nucleo usando solo le energie di decadimento beta.

La spettroscopia gamma è lo studio della transizione energetica di un nucleo atomico, transizione che è generalmente associata all’assorbimento o all’emissione di un raggio gamma. Come nella spettroscopia ottica (Principio di Franck-Condon), l’assorbimento di un raggio gamma da parte di un nucleo è molto più probabile quando l’energia del raggio è prossima all’energia di transizione. In questo caso si può vedere la risonanza attraverso la tecnica di Mössbauer. Nell’effetto Mössbauer la risonanza per assorbimento gamma può essere ottenuta da nuclei atomici fisicamente immobilizzati in un cristallo. L’immobilizzazione dell’atomo è necessaria affinché l’energia gamma non sia persa a causa del rinculo. Comunque quando un atomo emette raggi gamma che trasportano sostanzialmente tutta l’energia atomica essa è sufficiente per eccitare fino allo stesso stato energetico un secondo atomo immobilizzato.

Utilizzi

I raggi gamma forniscono molte informazioni riguardo ai fenomeni più energetici dell’universo. Poiché la gran parte della radiazione è assorbita dall’atmosfera terrestre, gli strumenti per la rilevazione vengono montati a bordo di palloni ad alta quota o di satelliti, come il Fermi Gamma-ray Space Telescope, fornendoci la nostra unica immagine dell’universo dei raggi gamma.

La natura energetica dei raggi gamma li ha resi utili per la sterilizzazione delle apparecchiature mediche, poiché uccidono facilmente i batteri attraverso un processo chiamato irradiazione. Questa loro capacità battericida li rende utili anche nella sterilizzazione delle confezioni alimentari.

Raggi gamma in medicina

I raggi gamma sono usati per alcuni esami diagnostici di medicina nucleare, come ad esempio la tomografia a emissione di positroni (PET). Le dosi assorbite in questi casi sono giudicate poco pericolose, a fronte del beneficio portato dalle informazioni che l’esame fornisce. Nella PET viene spesso utilizzato il fluorodesossiglucosio. Questo è uno zucchero radioattivo, che emette positroni che si annichilano con gli elettroni producendo coppie di raggi gamma che evidenziano il cancro. Il più comune emettitore usato nella medicina è l’isomero nucleare tecnezio-99m poiché emette radiazione dello stesso range energetico dei raggi X diagnostici. Un’altra procedura medica per il trattamento del cancro è la ‘chirurgia a coltello-Gamma‘. In questo trattamento si indirizzano i fasci di raggi gamma da angoli diversi per concentrare la radiazione e per minimizzare il danno al tessuto circostante.

I cambiamenti indotti dai raggi gamma possono essere anche usati per alterare le proprietà di pietre semi-preziose, ad esempio per cambiare il topazio in topazio blu.