Corpi CelestiNewsPianeti

Caratteristiche dei pianeti

Orbita dei pianeti

Tutti i pianeti, a eccezione dei pianeti interstellari, orbitano attorno a stelle o comunque oggetti sub-stellari. L’orbita percorsa da un pianeta attorno alla propria stella è descritta dalle leggi di Keplero: «i pianeti orbitano su orbite ellittiche, di cui la stella occupa uno dei fuochi.» Nel sistema solare tutti i pianeti orbitano intorno al Sole nella stessa direzione di rotazione del Sole (quindi in senso anti-orario, se visto dal polo nord della nostra stella). Si è visto tuttavia che almeno un pianeta extrasolare, WASP-17b, si muove in direzione opposta a quella in cui ruota la stella.

Parametri caratteristici di un'orbita ellittica
Parametri caratteristici di un’orbita ellittica

Il periodo che un pianeta impiega per compiere una rivoluzione completa intorno alla stella è conosciuto come periodo siderale o anno. La massima distanza tra il pianeta e il centro dell’orbita è detta semiasse maggiore. L’anno di un pianeta dipende dal valore del semiasse maggiore dell’orbita che esso percorre: più è grande, maggiore è la distanza che deve percorrere il pianeta lungo la propria orbita e con minor velocità, perché meno attratto dalla gravità della stella. La distanza tra il pianeta e la stella varia nel corso del periodo siderale. Il punto in cui il pianeta è più vicino alla stella viene chiamato periastro (perielio nel sistema solare), mentre il punto più lontano è chiamato afastro o apoastro (afelio nel sistema solare). Al periastro la velocità del pianeta è massima, convertendo l’energia gravitazionale in energia cinetica; all’apoastro, invece, la velocità assume il suo valore minimo.

Parametri orbitali

L’orbita di ogni pianeta è descritta attraverso sei parametri orbitali: il semiasse maggiore; l’eccentricità, l’inclinazione orbitale, l’ascensione retta del nodo ascendente, l’argomento del perielio o pericentro e l’anomalia vera. L’eccentricità descrive la forma dell’orbita: le orbite caratterizzate da una piccola eccentricità sono più circolari, mentre quelle con eccentricità maggiori sono più ellittiche. I pianeti del sistema solare percorrono orbite con basse eccentricità e pertanto quasi circolari. Le comete e gli oggetti della fascia di Kuiper (così come alcuni pianeti extrasolari) hanno invece orbite molto eccentriche e quindi particolarmente allungate.

L’inclinazione e l’ascensione retta del nodo ascendente sono due parametri angolari che individuano la disposizione del piano orbitale nello spazio. L’inclinazione è misurata rispetto al piano dell’orbita della Terra (piano dell’eclittica) per i pianeti del sistema solare, mentre per i pianeti extrasolari si usa il piano di vista dell’osservatore da terra. Gli otto pianeti del sistema solare giacciono molto vicini al piano dell’eclittica; le comete e gli oggetti della fascia di Kuiper invece possono discostarsene grandemente.

Il pericentro

I punti in cui il pianeta attraversa il piano dell’eclittica sono detti nodi, ascendente o discendente in base alla direzione del moto. L’ascensione retta del nodo ascendente è misurata rispetto a una direzione di riferimento, individuata nel sistema solare dal punto d’Ariete. L’argomento del pericentro specifica l’orientazione dell’orbita all’interno del piano orbitale, mentre l’anomalia vera la posizione dell’oggetto sull’orbita in funzione del tempo.

Diversi pianeti e pianeti nani del sistema solare (come Nettuno e Plutone), così come alcuni pianeti extrasolari, hanno periodi orbitali che sono in risonanza l’un con l’altro o con corpi più piccoli (fenomeno comune anche nei sistemi dei satelliti).

Rotazione dei pianeti

Simulazione della rotazione della Terra
Simulazione della rotazione della Terra

I pianeti ruotano attorno ad assi invisibili che passano per il loro centro. Il periodo di rotazione di un pianeta è conosciuto come il suo giorno. La maggior parte dei pianeti del sistema solare ruotano nello stesso verso in cui orbitano attorno al Sole, ovvero in verso antiorario se guardati dal polo nord celeste; le uniche eccezioni sono Venere e Urano, che ruotano in verso orario (sebbene a causa dell’estrema inclinazione dell’asse di Urano esistono due convenzioni che si differenziano nel polo che scelgono come nord e, di conseguenza, nel indicare come oraria o antioraria la rotazione attorno a tale polo, la rotazione di Urano è retrograda rispetto alla sua orbita, indipendentemente dalla convenzione adottata).

Grande è la variabilità della durata del giorno tra i pianeti, con Venere che completa una rotazione in 243 giorni terrestri e i giganti gassosi che la completano in poche ore. Non sono noti i periodi di rotazione dei pianeti extrasolari finora scoperti. Tuttavia, per quanto riguarda i pianeti gioviani caldi, la loro prossimità alle stelle attorno alle quali orbitano, suggerisce che siano in rotazione sincrona (ovvero, il loro periodo di rotazione è uguale al periodo di rivoluzione). Di conseguenza, essi mostrano sempre la stessa faccia alla stella intorno a cui orbitano e mentre su un emisfero è perpetuamente giorno, sull’altro è perpetuamente notte.

Inclinazione assiale dei pianeti

L'inclinazione dell'asse terrestre è di circa 23°
L’inclinazione dell’asse terrestre è di circa 23°

L’asse intorno a cui ruota il pianeta può essere (e in genere è) inclinato rispetto al piano orbitale. Ciò determina che vari nel corso dell’anno il quantitativo di luce che ogni emisfero riceve dalla stella. Quando l’emisfero settentrionale è diretto verso di essa e riceve maggiore illuminazione, quello meridionale si trova nella condizione opposta, e viceversa. È l’inclinazione dell’asse di rotazione quindi a comportare l’esistenza delle stagioni e i cambiamenti climatici annuali a esse associate.

I momenti in cui la stella illumina la superficie massima o minima di un emisfero sono detti solstizi. Ve ne sono due nel corso dell’orbita (dunque due all’anno) e a essi corrisponde la durata massima (solstizio d’estate) e minima (solstizio d’inverno) del giorno. I punti dell’orbita in cui il piano equatoriale e il piano orbitale del pianeta vengono a giacere sullo stesso piano sono detti equinozi. Agli equinozi la durata del giorno eguaglia la durata della notte (e la superficie illuminata si divide equamente tra i due emisferi geografici).

Inclinazione dell’asse di rotazione

Tra i pianeti del sistema solare, la Terra, Marte, Saturno e Nettuno possiedono valori dell’inclinazione dell’asse di rotazione prossimi ai 25°. Mercurio, Venere e Giove ruotano attorno ad assi inclinati di pochi gradi rispetto ai rispettivi piani orbitali e le variazioni stagionali sono minime. Urano, invece, possiede l’inclinazione assiale maggiore, pari a circa 98°, e ruota praticamente su un fianco. I suoi emisferi in prossimità dei solstizi sono quasi perennemente illuminati o perennemente in ombra. La durata delle stagioni è determinata dalla dimensione dell’orbita. Su Venere durano circa 55-58 giorni, sulla Terra 90-93 giorni, su Marte sei mesi, su Nettuno quarant’anni.

Le inclinazioni assiali dei pianeti extrasolari non sono state determinate con certezza. Gli studiosi ritengono che la maggior parte dei pianeti gioviani caldi possegga inclinazioni assiali nulle o quasi, in conseguenza della prossimità alla loro stella.

Dominanza orbitale

L'orbita di Nettuno comparata a quella di Plutone. Notare l'elongazione dell'orbita di Plutone in relazione con l'eccentricità di Nettuno, come anche il suo largo angolo sull'eclittica (inclinazione orbitale)
L’orbita di Nettuno comparata a quella di Plutone. Notare l’elongazione dell’orbita di Plutone in relazione con l’eccentricità di Nettuno, come anche il suo largo angolo sull’eclittica (inclinazione orbitale)

La caratteristica dinamica che definisce un pianeta è la dominanza orbitale. Un pianeta è gravitazionalmente dominante, o avrà ripulito le proprie vicinanze orbitali (riportando le parole utilizzate nella definizione di pianeta approvata dall’Unione Astronomica Internazionale) se nella propria zona orbitale non orbiteranno altri corpi di dimensioni comparabili a quelle del pianeta che non siano o suoi satelliti o comunque a esso gravitazionalmente legati. Questa caratteristica è la discriminante tra pianeti e pianeti nani. Sebbene questo criterio a oggi sia applicato soltanto al sistema solare, sono stati scoperti diversi sistemi planetari extrasolari in formazione in cui si osserva in atto il processo che condurrà alla formazione di pianeti gravitazionalmente dominanti.

Massa dei pianeti

La principale caratteristica fisica che consente di identificare un pianeta è la sua massa. Un pianeta deve possedere una massa sufficientemente elevata affinché la propria gravità domini sulle forze elettromagnetiche, presentandosi in uno stato di equilibrio idrostatico; più semplicemente, ciò significa che tutti i pianeti possiedono una forma sferica o sferoidale. Infatti, un corpo celeste può assumere una forma irregolare se possiede una massa inferiore a un valore limite, che è funzione della propria composizione chimica; superato tale valore, però, si innesca un processo di collasso gravitazionale che lo conduce, con tempi più o meno lunghi, ad assumere una forma sferica.

La massa è anche il principale attributo che consente di distinguere un pianeta da una nana bruna. A parte il Sole, nel sistema solare non esiste alcun altro oggetto con una massa superiore a tale valore; tuttavia sono stati scoperti numerosi oggetti extra-solari con masse che si avvicinano a tale valore limite e che possono essere definiti pertanto pianeti.

Il più piccolo pianeta conosciuto, escludendo pianeti nani e satelliti, è PSR B1257+12A, uno dei primi pianeti extrasolari scoperti, individuato nel 1992 in orbita intorno a una pulsar; la sua massa è circa la metà di quella del pianeta Mercurio.

Differenziazione interna

Illustrazione della struttura interna di Giove, suddivisa in un nucleo roccioso sovrastato da uno strato profondo di idrogeno metallico
Illustrazione della struttura interna di Giove, suddivisa in un nucleo roccioso sovrastato da uno strato profondo di idrogeno metallico

Ogni pianeta ha iniziato la propria esistenza in uno stato fluido; nelle fasi iniziali della sua formazione, i materiali più densi e più pesanti sono affondati verso il centro del corpo, lasciando i materiali più leggeri in prossimità della superficie. Ogni pianeta ha quindi un interno differenziato, costituito da un nucleo denso circondato da un mantello, che può presentarsi allo stato fluido.

I pianeti terrestri sono sigillati all’interno di una crosta dura, mentre nei giganti gassosi il mantello si dissolve semplicemente negli strati nuvolosi superiori.

I pianeti terrestri posseggono nuclei di elementi ferromagnetici, quali ferro e nichel, e mantelli di silicati. Si ritiene che Giove e Saturno posseggano nuclei composti da rocce e metalli, circondati da idrogeno metallico. Urano e Nettuno, più piccoli, posseggono nuclei rocciosi, circondati da mantelli composti da ghiacci d’acqua, ammoniaca, metano e di altre sostanze volatili. I moti dei fluidi in prossimità dei nuclei planetari determina l’esistenza di un campo magnetico.

Atmosfera dei pianeti

L'atmosfera terrestre
L’atmosfera terrestre

Tutti i pianeti del sistema solare hanno un’atmosfera, dal momento che la gravità associata alle loro grandi masse è abbastanza forte da intrappolare le particelle gassose. L’atmosfera terrestre è diversa rispetto a quelle degli altri pianeti. I processi vitali che hanno luogo sul pianeta, infatti, ne hanno alterato la composizione, arricchendola di ossigeno molecolare (O2). Mercurio è l’unico pianeta del sistema solare che possiede un’atmosfera estremamente tenue, che è stata soffiata via per la maggior parte dal vento solare.

Le atmosfere planetarie ricevono energia in vario grado dal Sole e dagli strati planetari più interni; ciò determina il verificarsi di fenomeni meteorologici, quali cicloni sulla Terra, tempeste di sabbia che interessano l’intero Marte, tempeste cicloniche e anticicloniche (come, ad esempio, la celebre Grande Macchia Rossa su Giove) e forti venti sui giganti gassosi.

Escursione terminca

Si è visto che alcuni pianeti gioviani caldi perdono la loro atmosfera nello spazio a causa delle radiazioni e del vento stellare in modo molto simile a quanto accade alle code delle comete. È stato ipotizzato che su questi pianeti si verifichi una grande escursione termica diurna e che possono pertanto svilupparsi venti supersonici tra l’emisfero illuminato e quello in ombra. Osservazioni eseguite su HD 189733 b sembrano tuttavia indicare che l’emisfero buio e l’emisfero illuminato abbiano temperature molto simili, a indicazione del fatto che l’atmosfera del pianeta ridistribuisce globalmente e con elevata efficienza l’energia ricevuta dalla stella.

Magnetosfera

Animazione che mostra l'interazione tra la magnetosfera terrestre e il campo magnetico interplanetario
Animazione che mostra l’interazione tra la magnetosfera terrestre e il campo magnetico interplanetario

Una caratteristica importante dei pianeti è l’esistenza di un momento magnetico intrinseco, che indica che il pianeta è ancora geologicamente attivo o, in altre parole, che al suo interno esistono ancora moti convettivi di materiali elettricamente conduttivi (che generano il campo). La presenza di un campo magnetico planetario modifica significativamente l’interazione tra il pianeta e il vento stellare; infatti attorno al pianeta si crea una “cavità” (una zona dello spazio in cui il vento solare non riesce a entrare) chiamata magnetosfera. Essa può raggiungere dimensioni molto più grandi rispetto al pianeta stesso. Al contrario, pianeti che non posseggono un campo magnetico intrinseco sono circondati da piccole magnetosfere indotte dall’interazione della ionosfera con il vento solare, che non sono in grado di proteggere efficacemente il pianeta.

Campo magnetico

Degli otto pianeti del sistema solare, solo Venere e Marte mancano di un campo magnetico intrinseco, mentre ne possiede uno la più grande luna di Giove, Ganimede. Il campo magnetico planetario più forte all’interno del sistema solare è quello di Giove. Le intensità dei campi magnetici degli altri giganti gassosi sono pressappoco simili a quella del campo terrestre, sebbene i loro momenti magnetici siano significativamente più grandi. I campi magnetici di Urano e Nettuno sono fortemente inclinati rispetto ai rispettivi assi di rotazione e scostati rispetto al centro del pianeta.

Nel 2004 un gruppo di astronomi delle Hawaii ha osservato un pianeta extrasolare creare una macchia sulla superficie della stella attorno a cui era in orbita, HD 179949. I ricercatori hanno ipotizzato che la magnetosfera del pianeta stesse interagendo con la magnetosfera stellare, trasferendo energia alla fotosfera stellare e incrementando localmente la già alta temperatura di 14 000 K di ulteriori 750 K.

Caratteristiche secondarie

Urano e i suoi anelli
Urano e i suoi anelli

Tutti i pianeti, a esclusione di Mercurio e Venere, hanno satelliti naturali, chiamati comunemente “lune”. La Terra ne ha una, Marte due, mentre i giganti gassosi ne hanno un elevato numero, organizzate in sistemi complessi simili a sistemi planetari. Alcune lune dei giganti gassosi hanno caratteristiche simile a quelle dei pianeti terrestri e dei pianeti nani e alcune di esse sono state studiate come possibili dimore di forme di vita (specialmente Europa, uno dei satelliti di Giove).

Attorno ai quattro giganti gassosi orbitano degli anelli planetari di dimensione e complessità variabili. Gli anelli sono composti principalmente da polveri ghiacciate o silicati e possono ospitare minuscoli satelliti pastore la cui gravità ne delinea la forma e ne conserva la struttura. Sebbene l’origine degli anelli planetari non sia nota con certezza, si crede che derivino da un satellite naturale che ha sofferto un grosso impatto oppure siano il risultato piuttosto recente della disgregazione di un satellite naturale, distrutto dalla gravità del pianeta dopo aver oltrepassato il limite di Roche.

Nessuna caratteristica secondaria è stata osservata attorno agli esopianeti fino scoperti, anche se si ipotizza che alcuni di questi, in particolare i giganti più massicci, potrebbero ospitare uno stuolo di esosatelliti simili a quelli che orbitano attorno a Giove. Tuttavia si crede che la sub-nana bruna Cha 110913-773444, classificata come un pianeta interstellare, sia circondata da un disco da cui in futuro potrebbero avere origine dei piccoli pianeti o satelliti.